Cas Clinique. Dr BOUSSELMI K

Les Vendredis de la Réanimation. 30/4/2010

- Patiente H.M âgée de 35 ans admise pour lésions bulleuses au niveau de deux jambes.
- ATCDS: dysthyroidie (opérée pour nodule thyroïdien)
 DID sous Mixtard (15;8)
 Ice cardiaque sous lasilix 60mg/j
- À l'examen clinique : sueurs, GCS = 11/15, pouls régulier à 105/min, pression artérielle à 85/41 mmHg, T° à 36°C, œdèmes des membres inférieurs, déclives, blancs et indolores avec placard erythemateux des lesions bulleuses dermohypodermiques au niveau du pied gauche et des 2 jambes.
- Turgescence spontanée des jugulaires, reflux hépato- jugulaires
- Fréquence respiratoire à 35/min, râles crépitant dans l'ensemble des champs pulmonaires, cyanose des extrémités, SpO₂ à 92 % sous oxygène par sonde nasale à 10L/min.

- La radiographie du thorax montre une cardiomégalie avec hypertrophie ventriculaire gauche et opacités floconneuses périhilaires bilatérales.
- L'analyse des gaz du sang artériel, en ventilation spontanée sous 10l/mn d'O2, donne les résultats suivants : pH = 7,32, PaO₂ = 132mmHg, PaCO₂ = 21mmHg, bicarbonates = 12 mmol/L.

```
biologie: NFS: gb = 7600; plq =117000; Hgb = 9.6

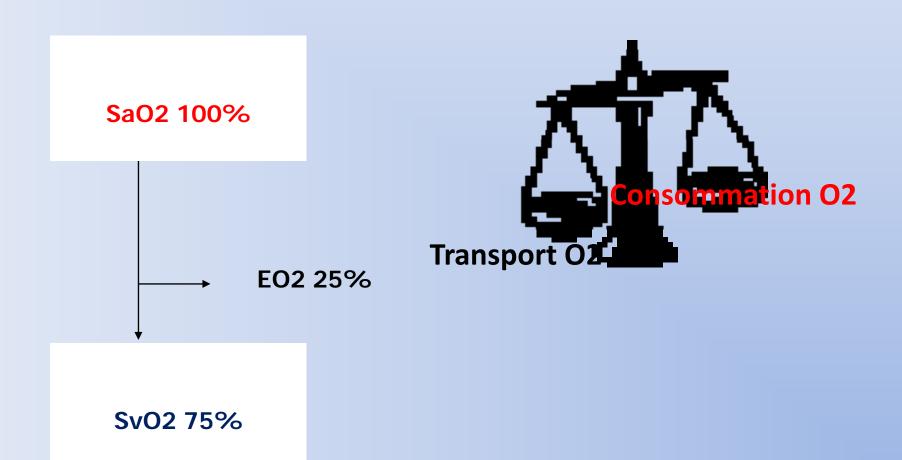
procal = 4.51

Uree = 19.65mmol/l Creat = 222; Na = 138; K+ = 4.9

Lact = 8mmol/l; cpk = 345

Iono U: Na U = 56; K+ =43. Uree U = 78.03 mmol/l
```

1. Quel est le diagnostic le plus probable et quels en sont les critères de gravité ?


Objectifs thérapeutiques standardisés

- Définition des objectifs:
 - Optimisation de la consommation en oxygène
 - Optimisation de la saturation veineuse en oxygène
 - Optimisation du transport en oxygène
 - Optimisation du volume éjectionnel

Optimisation de la consommation en oxygène

- Maintenir la consommation en oxygène (VO2) au moins à sa valeur initiale, supposée refléter les besoins métaboliques de base.
- les problèmes avec cette approche sont doubles:
 - Les conditions métaboliques peuvent rapidement se modifier
 - Certains traitements ont des effets métaboliques notables (les agents adrénergiques)

Optimisation de la consommation en oxygène Interprétation : à l'équilibre

Optimisation de la saturation veineuse en oxygène

- Diverses études ont montré le lien entre un abaissement de la saturation veineuse en oxygène (SvO2) et la défaillance multiorganique ou le décès.
- SvO2 est un guide thérapeutique de premier choix

Optimisation de la saturation veineuse en oxygène Déterminants de la SvO₂

Equation de Fick :
$$VO_2 = DC \times (CaO_2 - CvO_2)$$

Contenu en O_2 constitué d'une fraction combinée (Sv O_2 x 1.34 x Hb) et d'une fraction dissoute (Pa O_2 x 0.003)

Considérant comme négligeable la quantité d'oxygène dissout dans le sang, l'équation de Fick peut être exprimée

$$VO_2 = DC \times 1.34 \times Hb \times (SaO_2-SvO_2)$$

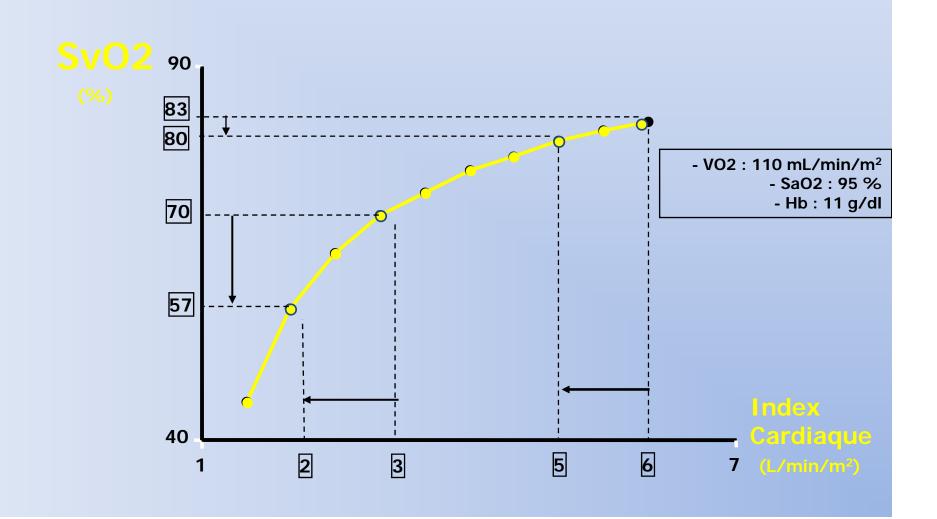
soit
$$SvO_2 = SaO_2 - \frac{VO2}{DC \times 1.34 \times Hb}$$

Optimisation de la saturation veineuse en oxygène Déterminants de la SvO₂

 $TaO2 = DC \times CaO2$

EO2 = VO2 / TaO2 = (SaO2-SvO2) / SaO2 Si SaO2 proche de 100%, EO2 = 1-SvO2 Et si DC = 5 l/min, Hb à 15 g/dl

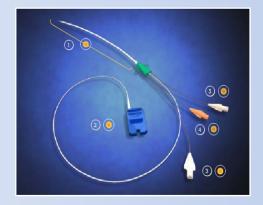
EO2 25%


SvO2 75%

Inégalité de variabilité des 4 déterminants de la SvO₂

- Indépendance des déterminants de la SvO₂ entre eux
- VO₂ et IC : déterminants majeurs
- Hb et SaO₂: déterminants mineurs
- Les variations isolées d'un seul des déterminants de SvO₂ sont exceptionnelles voire inexistantes en clinique
- La SvO₂ reste globalement stable grâce à la mise en jeu de mécanismes compensateurs ⇒ équilibre entre les besoins et les apports en O₂, garant du maintien d'un métabolisme aérobie

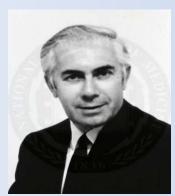
Exploration hémodynamique: la SvO₂



Surveillance continue de la SvO₂: deux sites de mesure

• La SvO₂ du sang veineux mêlé : CAP + fibres optiques

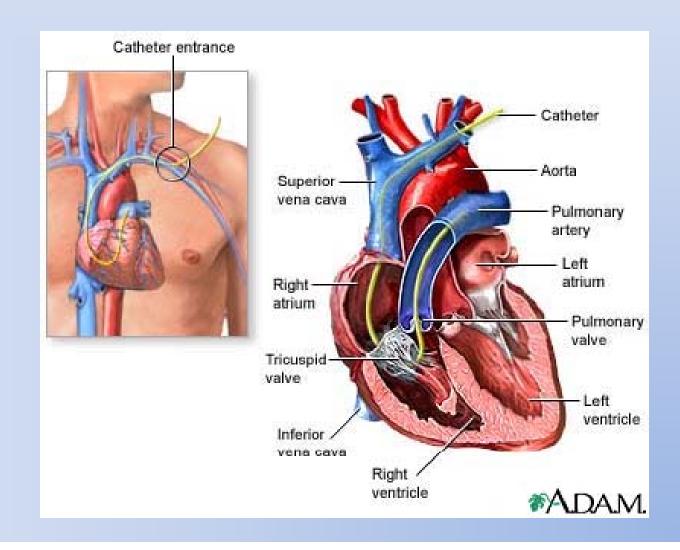
• La SvO2 centrale ou ScvO2 : cathéter VCS + fibres optiques


Interprétation

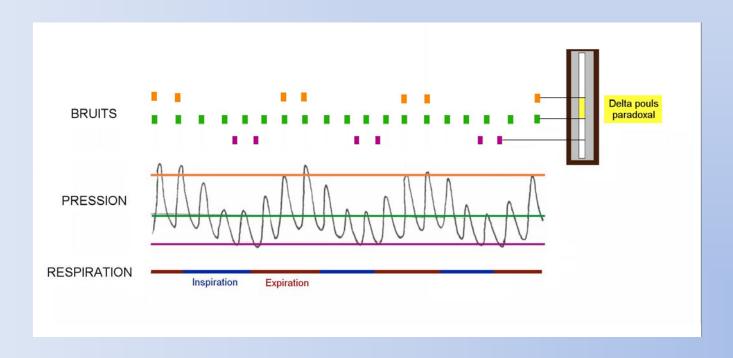
SvO2	Conséquences
SvO2>75%	Extraction normale
	TaO ₂ >VO ₂
SvO2 50 à 75%	Extraction compensatrice
VO2 dépendance	Baisse TaO ₂ , hausse VO ₂
SvO2 30 à 50%	Extraction critique
	Début acidose lactique
	TaO ₂ <vo<sub>2</vo<sub>
SvO2 25 à 30%	Acidose lactique sévère
SvO2<25%	Mort cellulaire

Optimisation du transport en oxygène

 Nécessite la mesure fiable du DC et le calcul répété du TO2 (mesure répétée du taux d'HB)


Mesure: cathétérisme artériel pulmonaire ou Swann Ganz

Swann



Ganz

Optimisation du volume éjectionnel

- Maximiser le volume éjectionnel par le remplissage vasculaire:
 - La mesure du DC
 - Mesures de precharge

